Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mao-Lin Hu ${ }^{\text {a* }}$ and Wei-Dong Wang ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China, and
${ }^{\text {b }}$ Department of Chemistry and Environmental Engineering, Hubei Normal University, Hubei, Huangshi 435002, People's Republic of China

Correspondence e-mail:
hu403cn@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.088$
$w R$ factor $=0.199$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Diphenylguanidinium hydrogen oxalate

In the crystal structure of the title compound, $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3}{ }^{+} .-$ $\mathrm{C}_{2} \mathrm{HO}_{4}{ }^{-}$, each cation is linked to four adjacent anions by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{N} \cdots \mathrm{O}=$ 2.870 (4)-2.895 (4) Å], and each anion is also linked to two adjacent anions by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{O} \cdots \mathrm{O}=$ 2.526 (3) \AA] to form a two-dimensional grid network parallel to (100).

Comment

Directional intermolecular interactions are the primary tools for assembling intriguing supramolecular structures, and hydrogen bonding is currently the most efficient (Zaworotko, 1997; Braga \& Grepioni, 2000). To extend this research, we were interested in the hydrogen bonding in the crystal structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$, (I), which we report here.

(I)

In the title compound (Fig. 1), the $\mathrm{O} 3-\mathrm{C} 15$ bond length [1.295 (4) \AA] differs significantly from the $\mathrm{O} 4-\mathrm{C} 15$ bond length $[1.210$ (4) \AA] , indicating this carboxyl group is not deprotonated (Table 1). In the anion, the C15/O3/H3/O4 carboxyl group, with an r.m.s. deviation from planarity of $0.0143 \AA$, forms a dihedral angle of 31.7 (3) ${ }^{\circ}$ with the other carboxylate group ($\mathrm{C} 14 / \mathrm{O} 1 / \mathrm{O} 2$). In the diphenylguanidinium cation, one phenyl ring (C1-C6), with an r.m.s. deviation from planarity of $0.0030 \AA$, forms a dihedral angle of 14.1 (3) ${ }^{\circ}$ with the other phenyl ring ($\mathrm{C} 8-\mathrm{C} 13$) (r.m.s. deviation from planarity of $0.0078 \AA$). In the crystal structure, each cation is linked to four adjacent anions by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and each anion is also linked to two adjacent anions by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a two-dimensional grid network parallel to (100) (Fig. 2 and Table 2). The hydrogen-bonding pattern, as shown in Fig. 2, contains the

Received 11 April 2005 Accepted 14 April 2005 Online 23 April 2005

Figure 1
The structure of (I), with the atom numbering, showing displacement ellipsoids at the 30% probability level.

Figure 2
The grid network formed by hydrogen-bonding interactions, which are shown as dashed lines. H atoms not involved in these interactions have been omitted for clarity.
graph-set motifs (Etter, 1990; Grell et al., 2000) $R_{3}^{3}(8), R_{3}^{3}(10)$ and $R_{4}^{4}(18)$.

Experimental

An ethanol solution (10 ml) of diphenylguanidine ($0.1 \mathrm{mmol}, 0.21$) was added dropwise to a stirred aqueous solution (10 ml) of oxalic acid $(0.2 \mathrm{mmol}, 0.18 \mathrm{~g})$ at 253 K . The reaction mixture was filtered and the filtrate was allowed to stand for approximately two weeks until colorless single crystals formed.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{3}{ }^{+} . \mathrm{C}_{2} \mathrm{HO}_{4}{ }^{-}$
$M_{r}=301.30$
Monoclinic, $P 2_{1} / c$
$a=15.315$ (7) \AA
$b=5.573(3) \AA$
$c=17.487$ (8) \AA
$\beta=99.863(9)^{\circ}$
$V=1470.3(12) \AA^{3}$
$Z=4$
$D_{x}=1.361 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1357
reflections
$\theta=2.4-24.4^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, colorless
$0.39 \times 0.23 \times 0.08 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.962, T_{\text {max }}=0.992$
7305 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.088$
$w R\left(F^{2}\right)=0.199$
$S=1.32$
2640 reflections
200 parameters
H -atom parameters constrained

2640 independent reflections
2271 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-16 \rightarrow 18$
$k=-6 \rightarrow 6$
$l=-20 \rightarrow 20$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0667 P)^{2}\right.} \\
&+1.2264 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{O} 1-\mathrm{C} 14$	$1.225(4)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.338(4)$
$\mathrm{O} 2-\mathrm{C} 14$	$1.262(4)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.324(4)$
$\mathrm{O} 3-\mathrm{C} 15$	$1.295(4)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.321(4)$
$\mathrm{O} 4-\mathrm{C} 15$	$1.210(4)$		
$\mathrm{N} 3-\mathrm{C} 7-\mathrm{N} 2$	$122.3(3)$	$\mathrm{O} 1-\mathrm{C} 14-\mathrm{O} 2$	$127.2(3)$
$\mathrm{N} 3-\mathrm{C} 7-\mathrm{N} 1$	$120.5(3)$	$\mathrm{O} 4-\mathrm{C} 15-\mathrm{O} 3$	$125.1(3)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{N} 1$	$117.2(3)$		

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{O} 1$	0.86	2.05	$2.878(4)$	161
$\mathrm{~N} 3-\mathrm{H} 3 C \cdots 3^{\mathrm{i}}$	0.86	2.39	$2.895(4)$	118
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {ii }}$	0.86	2.03	$2.875(4)$	168
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {iii }}$	0.86	2.11	$2.870(4)$	148
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\text {iv }}$	0.82	1.72	$2.526(3)$	167
Symmetry codes:	(i)	$x, y+1, z ;$	(ii)	$x,-y+\frac{3}{2}, z+\frac{1}{2} ;$
(iii) $x,-y+\frac{1}{2}, z+\frac{1}{2} ;$	(iv)			

Symmetry
$x, y-1, z$

All H atoms were positioned geometrically and allowed to ride on their parent atoms at $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ with $U_{\text {iso }}=$ $1.2 U_{\text {eq }}$ (parent atom), $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$ with $U_{\text {iso }}=$ $1.2 U_{\text {eq }}$ (parent atom), and $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$ with $U_{\text {iso }}=$ $1.2 U_{\text {eq }}$ (parent atom).

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the Wenzhou Technology Project Foundation of China (grant No. S2004A004), the

organic papers

Zhejiang Provincial Natural Science Foundation of China (grant No. Y404118) and the National Natural Science Foundation of China (grant No. 20471043).

References

Braga, D. \& Grepioni, F. (2000). Acc. Chem. Res. 33, 601-608.

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Winsonsin, USA.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Grell, J., Bernstein, J. \& Timhofer, G. (2000). Acta Cryst. B56, 166-179.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.
Zaworotko, M. J. (1997). Nature (London), 386, 220-226.

